Scegli la tua regione

Seleziona la regione che meglio si adatta alla tua posizione o alle tue preferenze.

Scegli la lingua del sito

Questa impostazione controlla la lingua dell'interfaccia utente, inclusi i pulsanti, i menu e tutto il testo del sito. Seleziona la tua lingua preferita per la migliore esperienza di navigazione.

Scegli le lingue per gli annunci di lavoro

Seleziona le lingue per gli annunci di lavoro che desideri vedere. Questa impostazione determina quali annunci di lavoro ti verranno mostrati.

KU Leuven

PhD Position: Multiscale Mechanical Modeling of Advanced Transistors

2025-04-15 (Europe/Brussels)
Salva lavoro

Informazioni sul datore di lavoro

KU Leuven is an autonomous university. It was founded in 1425. It was born of and has grown within the Catholic tradition.

Visita la pagina del datore di lavoro

Joint imec an KU Leuven PhD position. The student will be enrolled in the Department of Mechanical Engineering of KU Leuven.
Website unit

Project

Background:
Complementary Field-Effect Transistor (CFET) technology represents a significant advancement in semiconductor devices, offering potential improvements in performance and scaling. Stress engineering in CFET channels and their interaction with local interconnects is a critical area of study to optimize device reliability and efficiency. Traditional modeling approaches often fall short in accurately predicting the complex stress distributions that arise from various sources, such as thermal-mechanical mismatch, lattice mismatch, and local heating due to Joule heating and high-frequency switching.
To address these challenges, this research proposes the development of a comprehensive multiscale modeling framework that integrates appropriate high fidelity models at appropriate length-scales and trains relevant surrogate models such that an efficient thermal-mechanical digital twin of CFET channels and local interconnects can be developed through multi-fidelity approaches, enabling accurate prediction of thermal-mechanical stresses, especially towards channel stress optimization and reliability evaluations. Such models should be trained to capture the properties of superlattices in CFETs. The digital twin will incorporate feedback from the fabrication process and integration data, ensuring that predictions are continuously refined and accurate. Uncertainties quantification approaches will be utilized to address the impact of unknown fabrication and process parameters.
Additionally, by linking the digital twin with an actual fabricated CFET module, not only the study will obtain data on the fabrication history and but also from module test data, further enhancing the accuracy and reliability of the predictions.
Problem Statement:
The interaction between CFET channels and local interconnects introduces complex stress distributions that can significantly impact device performance. Current models lack the integration of multiscale approaches and feedback mechanisms to accurately predict these stresses. Furthermore, the computational costs associated with detailed simulations can be prohibitive, necessitating the development of efficient modeling techniques.
Objectives:
The primary objectives of this research are:
• Develop a digital twin of CFET channels and local interconnects that incorporates feedback from the fabrication process and integration and test data. The digital twin will incorporate multi-scale and multi-fidelity approaches to minimize computational costs.
• Accurately predict stress distributions arising from thermal-mechanical mismatch, lattice mismatch, and local heating.
• Innovate CFET designs and technologies that leverage stress effects to enhance channel mobility and overall device performance.

Profile

Type of work: 10% literature and technological study, 60% to develop efficient computational models, 30% to design and conduct experiments to calibrate and validate the computational models.

Offer

Refer to imec PhD programs page:

https://www.imec-int.com/en/work-at-imec/job-opportunities/phd-at-imec

Interested?

For more information please contact Prof. dr. ir. Houman Zahedmanesh, tel.: +32 16 19 34 75, mail: houman.zahedmanesh@kuleuven.be.

KU Leuven strives for an inclusive, respectful and socially safe environment. We embrace diversity among individuals and groups as an asset. Open dialogue and differences in perspective are essential for an ambitious research and educational environment. In our commitment to equal opportunity, we recognize the consequences of historical inequalities. We do not accept any form of discrimination based on, but not limited to, gender identity and expression, sexual orientation, age, ethnic or national background, skin colour, religious and philosophical diversity, neurodivergence, employment disability, health, or socioeconomic status. For questions about accessibility or support offered, we are happy to assist you at this email address.

Dettagli del lavoro

Titolo
PhD Position: Multiscale Mechanical Modeling of Advanced Transistors
Datore di lavoro
Sede
Oude Markt 13 Lovanio, Belgio
Pubblicato
2024-10-22
Scadenza candidatura
2025-04-15 23:59 (Europe/Brussels)
2025-04-15 23:59 (CET)
Tipo di lavoro
Salva lavoro

Altri lavori per questo datore di lavoro

Mostrando lavori in Inglese, Svedese, Finlandese Modifica impostazioni

Informazioni sul datore di lavoro

KU Leuven is an autonomous university. It was founded in 1425. It was born of and has grown within the Catholic tradition.

Visita la pagina del datore di lavoro